Midterm Program Correctness, March 6th 2015, 14:00-16:00h

- This midterm consists of three problems. You can earn 100 grade points: 15 points for problem 1, 25 points for problem 2, 50 points for problem 3, and 10 points for not misspelling your name and student number.
- Give complete annotations, and linear proofs. If you make too big steps in your proofs (even if they are correct), grade points will be subtracted.
- Use a pen. Do not use a pencil! Write neatly! If your handwriting needs guessing to read it, it is considered incorrect. Do not hand in scratch paper!
- This exam is a closed book exam. You are not allowed to use the reader, slides, notes, or any other material.

Problem 1 (15 pt). Given are the program variables $x, y: \mathbb{Z}$. Derive an annotated program fragment S that consists of exactly two assignments and satisfies

$$
\begin{array}{ll}
S & \{4 \cdot x+2 \cdot y=2 \cdot X+4 \cdot Y \wedge 2 \cdot x-y=Y\} \\
& \{x=X \wedge y=Y\} .
\end{array}
$$

Problem $2(25 \mathrm{pt})$. Given is the program variable $n: \mathbb{Z}$. Derive an annotated conditional command T that satisfies

$$
T \begin{aligned}
& \{X \geq 0 \wedge(n=2 \cdot X-3 \vee 4 \cdot X+n=0)\} \\
& \\
& \{n=X\}
\end{aligned}
$$

Problem 3 (50 pt). The function $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the recurrence:

$$
\begin{aligned}
n=0 & \Rightarrow f(n)=1 \\
n>0 \wedge n \bmod 2=0 & \Rightarrow f(n)=1+2 \cdot f(n \operatorname{div} 2) \\
n>0 \wedge n \bmod 2=1 & \Rightarrow f(n)=2 \cdot f(n \operatorname{div} 2)
\end{aligned}
$$

Derive an annotated command U that satisfies the following specification:

$$
\begin{aligned}
& \operatorname{var} a, n: \mathbb{N} ; \\
& \\
& U \quad\{P: X=f(n)\} \\
& \\
& \quad\{Q: X=a\}
\end{aligned}
$$

Use a while-loop that maintains the invariant $J: X=a+b \cdot f(n) \wedge n \geq 0$. You will need active finalization.

